SISTEMA DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL DE LAZO CERRADO

 SISTEMAS DE LAZO ABIERTO VERSUS SISTEMAS DE LAZO CERRADO

 Comenzaremos por considerar la diferencia básica entre un sistema de lazo abierto (sin autocorrección) y un sistema de lazo cerrado (con autocorrección). Suponga que se desea mantener un nivel de líquido constante en el tanque de la figura 9-1(a). El líquido ingresa al tanque por la parte superior y sale vía la tubería de salida de la parte inferior. Una forma de intentar mantener el nivel adecuado es que una persona ajuste la válvula manual de forma que el flujo del líquido al tanque balancee de forma exacta la velocidad de salida del fluido cuando el líquido se encuentra en el nivel adecuado. Puede requerir un cierto seguimiento de la apertura correcta de la válvula, pero eventualmente la persona encontraría la posición adecuada. Si esta persona se detiene y observa el sistema durante un momento y percibe que el nivel del líquido permanece constante, puede concluir que todo está bien, que la apertura de la válvula es la correcta para mantener el nivel correcto. En realidad, siempre que las condiciones de operación permanezcan iguales, estará en lo correcto. El problema es que en la vida real, las condiciones de operación no permanecen iguales. Pueden presentarse numerosos cambios sutiles que pueden afectar el balance que se logró. Por ejemplo, la presión de suministro en el lado superior de la válvula manual puede incrementarse por alguna razón. Esto incrementaría el flujo de entrada sin un incremento correspondiente en la salida del flujo. El nivel del líquido comenzaría a elevarse y el tanque pronto se desbordaría (realmente existiría un cierto incremento en el flujo de salida debido a la mayor presión en la parte inferior del tanque cuando el nivel se eleve, pero sería muy poca la probabilidad de que ésta balancearía exactamente la nueva velocidad del flujo de entrada). Un incremento en la presión de suministro es sólo un ejemplo de un cambio que podría alterar el ajuste manual. Algún cambio en la temperatura cambiará la viscosidad del líquido y,


por tanto, cambiarán las velocidades de flujo; un cambio en una restricción del sistema de la parte inferior de la tubería de salida cambiará la velocidad de flujo de salida, etcétera. Ahora considere la configuración de la figura 9-1(b). Si el nivel del líquido desciende un poco, el flotador baja, abriendo de este modo la válvula de paso para admitir mayor afluencia de líquido. Si el nivel del líquido se eleva un poco, el flotador sube y la válvula de paso se cierra un poco para reducir la afluencia de líquido. Mediante una adecuada fabricación y dimensionamiento de la válvula y del acoplamiento mecánico entre el flotador y la válvula, sería posible controlar el nivel de líquido muy cercano al punto deseado (tendría que existir una pequeña desviación del nivel deseado de líquido para ocasionar que la apertura de la válvula cambiara). Con este sistema las condiciones de operación pueden cambiar todo lo que se desee. Sin importar la dirección del nivel de líquido que intente desviarse respecto al punto deseado y sin importar el motivo de la desviación, el sistema tenderá a restablecerse al punto deseado.Nuestro análisis hasta este punto ha tratado del problema específico de controlar el nivel de líquido en un tanque. Sin embargo, en términos generales, muchos sistemas de control industrial tienen ciertas cosas en común. Sin importar cual es el sistema exacto, existen ciertas relaciones entre los mecanismos de control y la variable controlada que nunca cambian. Intentaremos ilustrar estas relaciones de causa-efecto mediante el trazo de diagramas de bloque de nuestros sistemas industriales. Debido a la “similitud” general entre distintos sistemas, somos capaces de diseñar diagramas de bloques generalizados que apliquen a todos los sistemas. En la figura 9-2(a) se muestra tal diagrama de bloques generalizado de lazo abierto. Ahora trataremos de relacionar los bloques de la figura 9-2(a) con los componentes físicos del sistema de válvula de control manual de la figura 9-1(a). La figura 9-2(a) muestra que un controlador (en nuestro ejemplo, la válvula manual) afecta al proceso general (en nuestro ejemplo las tuberías que transportan el líquido y el tanque que contiene al líquido). La flecha que sale de la caja del controlador hacia la caja del proceso significa sólo que el controlador de alguna forma “envía señales” o “ejerce influencia o afecta” al proceso. La caja del controlador contiene una flecha que apunta hacia ella denominada Configuración. Esto significa que el operador humano debe suministrar de algún modo cierta información al controlador (al menos una vez) que indique lo que se supone que debe hacer el controlador. En nuestro ejemplo, la configuración será la posición del indicador de la válvula. La caja del proceso contiene una flecha apuntando a ella denominada Perturbaciones. Esto significa que las condiciones externas son las condiciones cambiantes mencionadas antes, como cambios de presión, de viscosidad, etcétera. La flecha de variable controlada representa la variable en el proceso que se supone el
sistema debe monitorear y corregir cuando ésta requiera corrección. En nuestro ejemplo la variable controlada es el nivel de líquido en el tanque. El diagrama de bloques básicamente sólo es un indicador de causa-efecto, pero muestra de una manera bastante clara que para una configuración dada el valor de la variable controlada no puede conocerse de un modo fiable. Las perturbaciones que se presentan en el proceso ocasionan que sus efectos se sientan en la salida del proceso, es decir, en el valor de la variable controlada. Ya que el diagrama de bloques de la figura 9-2(a) no muestra ninguna línea que regrese para formar un círculo, o para “cerrar el lazo” tal sistema se denomina un sistema de lazo abierto. Todos los sistemas de lazo abierto se caracterizan por la incapacidad de comparar el valor real de la variable controlada con el valor deseado y emprender una acción con base en esta comparación. Por otro lado, el sistema que contiene al flotador y a la válvula de paso de la figura 9-1(b) se representa en forma de diagrama de bloques en la figura 9-2(b) En este diagrama la configuración y el valor de la variable controlada se comparan entre sí dentro de un comparador. La salida del comparador representa la diferencia entre los dos valores. Luego la señal de diferencia se alimenta al controlador, permitiendo que éste afecte el proceso. El hecho de que la variable controlada retorne para ser comparada con la configuración hace que este diagrama de bloques se vea como un “lazo cerrado”. Los sistemas que presentan esta característica se denominan sistemas de lazo cerrado. Los sistemas de lazo cerrado están caracterizados por la capacidad de comparar el valor real de la variable controlada con su valor deseado y emprender una acción de forma automática con base en tal comparación. Para nuestro ejemplo de control del nivel del flotador de la figura 9-1(b), el parámetro representa la ubicación del flotador dentro del tanque. Es decir, el operador humano selecciona el nivel que desea mediante la ubicación del flotador a una cierta altura por encima del fondo del tanque. Esta configuración puede ser alterada mediante la modificación de la longitud de la varilla A que conecta al flotador con el miembro horizontal B del acoplamiento de la figura 9-1(b). El comparador dentro del diagrama de bloques es el propio flotador de nuestro ejemplo. El flotador constantemente está consciente del nivel real del líquido, ya que se desplaza hacia arriba o hacia abajo de acuerdo a este nivel. También está consciente de la configuración, que es el nivel del líquido deseado, como se explicó anteriormente. Si estos dos no concuerdan, el flotador envía una señal que depende de la magnitud y polaridad de la diferencia entre ellos. Es decir, si el nivel es demasiado bajo, el flotador provocará que el miembro horizontal B de la figura 9-1(b) se desplace (rote) en sentido contrario a las manecillas del reloj; la cantidad de desplazamiento en este sentido de B dependerá de qué tan bajo se encuentre el líquido. Si el nivel del líquido es demasiado alto, el flotador ocasionará que el miembro B se desplace en el sentido de las manecillas del reloj. Nuevamente, la cantidad de desplazamiento dependerá de la diferencia entre la configuración y la variable controlada; en este caso la diferencia representa qué tan alto se encuentra el líquido respecto al nivel deseado. De este modo, el flotador en el dibujo mecánico corresponde al bloque comparador del diagrama de bloques de la figura 9-2(b). El controlador en el diagrama de bloques es la válvula de paso del diagrama mecánico real. La válvula abre y cierra para elevar o disminuir el nivel del líquido, de la misma forma que el controlador de la figura 9-2(b) envía una señal de salida al proceso para afectar el valor de la variable controlada. En nuestro ejemplo particular, existe una clara correspondencia entre los componentes físicos del sistema real y los bloques del diagrama de bloques. En algunos sistemas la correspondencia no es tan clara. Puede resultar difícil o imposible indicar con claridad los componentes físicos que comprenden ciertos bloques. Un componente físico puede desempeñar la función de dos bloques distintos, o puede realizar la función de un bloque y una parte de la función de otro bloque. Debido a la dificultad de establecer una correspondencia exacta entre las dos representaciones del sistema, no siempre lo intentaremos para cada sistema que estudiemos. El principal punto a observar aquí es que cuando el diagrama de bloques muestra el valor de la variable controlada que se retroalimenta y se compara con la configuración, el sistema se denomina Sistema de Lazo Cerrado. Como se estableció anteriormente, estos sistemas tienen la capacidad de emprender una acción de forma automática y de corregir cualquier diferencia entre el valor actual y el valor deseado, sin importar el motivo de la diferencia.
Fuente: Electrónica Industrial Moderna
Autor: Timothy J. Maloney 
Editorial Pearson Pretince Hall
5a. Edición

Comentarios

Entradas populares de este blog

DIAGRAMA A BLOQUES DE UN SISTEMA DE CONTROL DE LAZO CERRADO

EJEMPLOS DE SISTEMAS DE CONTROL DE LAZO CERRADO